Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119701, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417588

RESUMEN

Recent findings suggest that uncarboxylated osteocalcin (GluOC) promotes glucose and lipid metabolism via its putative receptor GPRC6A; however, its direct effect on adipocytes remains elusive. In this study, we elucidated the effects of GluOC on adipocytes, with an emphasis on the role of cell adhesion molecules. We determined that GluOC promoted the expression of adipocyte adhesion molecule (ACAM) and its transcription factor Krüppel-like factor 4 and enhanced the cortical actin filament assembly, which ameliorated lipid droplet hypertrophy. Additionally, GluOC upregulated the expression of integrin αVß3 and activation of focal adhesion kinase (FAK) and prevented insulin receptor substrate 1 (IRS1) degradation by inhibiting the ubiquitin-proteasome system via the FAK-PLC-PKC axis, which activated IRS1-Akt-mediated glucose transporter 4 (GLUT4) transport. Furthermore, we showed that GluOC elevated the expression of the insulin-independent glucose transporters GLUT1 and GLUT8, which facilitated insulin stimulation-independent glucose transport. The GluOC-induced activation of integrin αVß3 signaling promoted microtubule assembly, which improved glucose and lipid metabolism via its involvement in intracellular vesicular transport. GluOC treatment also suppressed collagen type 1 formation, which might prevent adipose tissue fibrosis in obese individuals. Overall, our results imply that GluOC promotes glucose and lipid metabolism via ACAM, integrin αVß3, and GLUT1 and 8 expression, directly affecting adipocytes.


Asunto(s)
Glucosa , Metabolismo de los Lípidos , Humanos , Glucosa/metabolismo , Osteocalcina/metabolismo , Osteocalcina/farmacología , Metabolismo de los Lípidos/genética , Transportador de Glucosa de Tipo 1/metabolismo , Integrina alfaVbeta3 , Adipocitos/metabolismo , Insulina/metabolismo , Moléculas de Adhesión Celular/metabolismo
2.
FEBS Lett ; 597(11): 1479-1488, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36976525

RESUMEN

An acidic environment in bone is essential for bone metabolism and the production of decarboxylated osteocalcin, which functions as a regulatory hormone of glucose metabolism. Here, we describe the high-resolution X-ray crystal structure of decarboxylated osteocalcin under acidic conditions. Decarboxylated osteocalcin at pH 2.0 retains the α-helix structure of native osteocalcin with three γ-carboxyglutamic acid residues at neutral pH. This implies that decarboxylated osteocalcin is stable under an acidic environment in bone. In addition, site-directed mutagenesis revealed that Glu17 and Glu21 are important for the adiponectin-inducing activity of decarboxylated osteocalcin. These findings suggest that the receptor of decarboxylated osteocalcin responds to the negative charge in helix 1 of osteocalcin.


Asunto(s)
Adiponectina , Huesos , Osteocalcina/metabolismo , Huesos/metabolismo , Ácido 1-Carboxiglutámico
3.
J Cell Sci ; 135(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34859819

RESUMEN

Insulin signalling is tightly controlled by various factors, but the exact molecular mechanism remains incompletely understood. We have previously reported that phospholipase C-related but catalytically inactive protein (PRIP; used here to refer to both PRIP-1 and PRIP-2, also known as PLCL1 and PLCL2, respectively) interacts with Akt1, the central molecule in insulin signalling. Here, we investigated whether PRIP is involved in the regulation of insulin signalling in adipocytes. We found that insulin signalling, including insulin-stimulated phosphorylation of the insulin receptor (IR), insulin receptor substrate-1 (IRS-1) and Akt, and glucose uptake were impaired in adipocytes from PRIP double-knockout (PRIP-KO) mice compared with those from wild-type (WT) mice. The amount of IR expressed on the cell surface was decreased in PRIP-KO adipocytes. Immunoprecipitation assays showed that PRIP interacted with IR. The reduced cell surface IR in PRIP-KO adipocytes was comparable with that in WT cells when Rab5 (Rab5a, -5b and -5c) expression was silenced using specific siRNA. In contrast, the dephosphorylation of IRS-1 at serine residues, some of which have been reported to be involved in the internalisation of IR, was impaired in cells from PRIP-KO mice. These results suggest that PRIP facilitates insulin signalling by modulating the internalisation of IR in adipocytes.


Asunto(s)
Insulina , Fosfolipasas de Tipo C , Adipocitos , Animales , Proteínas Sustrato del Receptor de Insulina/genética , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados , Fosforilación , Transducción de Señal
4.
Mol Metab ; 54: 101360, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34673295

RESUMEN

OBJECTIVE: Accumulating evidence indicates that an adverse perinatal environment contributes to a higher risk of metabolic disorders in the later life of the offspring. However, the underlying molecular mechanisms remain largely unknown. Thus, we investigated the contribution of maternal high-calorie diet and osteocalcin to metabolic homeostasis in the offspring. METHODS: Eight-week-old C57Bl/6N female mice were mated with age-matched males and allocated randomly to three groups: a normal-diet (ND) or a high-fat, high-sucrose diet group, which was administered either saline (control) or GluOC (10 ng/g body mass) from the day of mating to that of delivery, and the dams were fed a ND after the delivery. Pups weaned at 24 days after birth were analyzed. RESULTS: A maternal high-fat, high-sucrose diet during pregnancy causes metabolic disorders in the liver of the offspring via hypermethylation of the Pygl gene, encoding glycogen phosphorylase L, which mediates hepatic glycogenolysis. The reduced expression of Pygl induced by the maternal diet causes the hepatic accumulation of glycogen and triglyceride in the offspring, which remains in adulthood. In addition, the administration of uncarboxylated osteocalcin during pregnancy upregulates Pygl expression via both direct CREBH and ATF4 and indirect epigenomic pathways, mitigating the maternal diet-induced obesity and abnormal glucose and lipid metabolism in adulthood. CONCLUSIONS: We propose that maternal energy status is reflected in the hepatic glycogenolysis capacity of the offspring via epigenetic modification of Pygl and uncarboxylated osteocalcin regulates glycogenolysis.


Asunto(s)
Glucógeno Fosforilasa/metabolismo , Hígado/metabolismo , Osteocalcina/metabolismo , Animales , Línea Celular , Dieta Alta en Grasa/efectos adversos , Femenino , Glucógeno Fosforilasa/genética , Glucogenólisis , Metilación , Ratones , Ratones Endogámicos C57BL , Osteocalcina/administración & dosificación
5.
Biochem Biophys Res Commun ; 557: 174-179, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33865226

RESUMEN

Involvement of the bone matrix protein osteocalcin (OC) in the development of learning and memory, and the prevention of anxiety-like behaviors in mice. However, the direct effects of OC on neurons are still unknown comparing to the mechanism how OC affects systemic energy expenditure and glucose homeostasis. In this study, we investigated the effect of OC on proliferation, differentiation, and survival of neurons using the rat pheochromocytoma cell line PC12. RT-PCR analysis for OC receptor candidates revealed that Gpr158, but not Gprc6a, mRNA was expressed in PC12 cells. The growth of PC12 cells cultured in the presence of 5-50 ng/mL of either uncarboxylated (GluOC) or carboxylated (GlaOC) OC was increased compared to cells cultured in the absence of OC. In addition, NGF-induced neurite outgrowth was enhanced by OC, and H2O2-induced cell death was suppressed by pretreatment with OC. All of these results were observed for both GluOC and GlaOC at comparable levels, suggesting that OC may directly affect cell proliferation, differentiation, and survival by binding to its candidate receptor, GPR158.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Osteocalcina/farmacología , Animales , Muerte Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Peróxido de Hidrógeno/toxicidad , Factor de Crecimiento Nervioso/farmacología , Neuritas/efectos de los fármacos , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Células PC12 , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
6.
Biochem Biophys Res Commun ; 552: 106-113, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33743346

RESUMEN

Cancer is characterized by uncontrolled proliferation resulting from aberrant cell cycle progression. The activation of phosphatidylinositol 3-kinase (PI3K)/AKT signaling, a regulatory pathway for the cell cycle, stabilizes cyclin D1 in the G1 phase by inhibiting the activity of glycogen synthase kinase 3ß (GSK3ß) via phosphorylation. We previously reported that phospholipase C-related catalytically inactive protein (PRIP), a phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] binding protein, regulates PI3K/AKT signaling by competitively inhibiting substrate recognition by PI3K. Therefore, in this study, we investigated whether PRIP is involved in cell cycle progression. PRIP silencing in MCF-7 cells, a human breast cancer cell line, demonstrated PI(3,4,5)P3 signals accumulated at the cell periphery compared to that of the control. This suggests that PRIP reduction enhances PI(3,4,5)P3-mediated signaling. Consistently, PRIP silencing in MCF-7 cells exhibited increased phosphorylation of AKT and GSK3ß which resulted in cyclin D1 accumulation. In contrast, the exogenous expression of PRIP in MCF-7 cells evidenced stronger downregulation of AKT and GSK3ß phosphorylation, reduced accumulation of cyclin D1, and diminished cell proliferation in comparison to control cells. Flow cytometry analysis indicated that MCF-7 cells stably expressing PRIP attenuate cell cycle progression. Importantly, tumor growth of MCF-7 cells stably expressing PRIP was considerably prevented in an in vivo xenograft mouse model. In conclusion, PRIP expression downregulates PI3K/AKT/GSK3ß-mediated cell cycle progression and suppresses tumor growth. Therefore, we propose that PRIP is a new therapeutic target for anticancer therapy.


Asunto(s)
Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Proteínas Portadoras/genética , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Células MCF-7 , Masculino , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Desnudos , Neoplasias/genética , Neoplasias/patología , Fosfatidilinositoles/sangre , Fosfatidilinositoles/metabolismo , Transducción de Señal , Trasplante Heterólogo , Carga Tumoral/genética
7.
J Biol Chem ; 296: 100274, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33428938

RESUMEN

The G protein-coupled receptor GPRC6A regulates various physiological processes in response to its interaction with multiple ligands, such as extracellular basic amino acids, divalent cations, testosterone, and the uncarboxylated form of osteocalcin (GluOC). Global ablation of GPRC6A increases the susceptibility of mice to diet-induced obesity and related metabolic disorders. However, given that GPRC6A is expressed in many tissues and responds to a variety of hormonal and nutritional signals, the cellular and molecular mechanisms underlying the development of metabolic disorders in conventional knockout mice have remained unclear. On the basis of our previous observation that long-term oral administration of GluOC markedly reduced adipocyte size and improved glucose tolerance in WT mice, we examined whether GPRC6A signaling in adipose tissue might be responsible for prevention of metabolic disorders. We thus generated adipocyte-specific GPRC6A knockout mice, and we found that these animals manifested increased adipose tissue weight, adipocyte hypertrophy, and adipose tissue inflammation when fed a high-fat and high-sucrose diet compared with control mice. These effects were associated with reduced lipolytic activity because of downregulation of lipolytic enzymes such as adipose triglyceride lipase and hormone-sensitive lipase in adipose tissue of the conditional knockout mice. Given that, among GPR6CA ligands tested, GluOC and ornithine increased the expression of adipose triglyceride lipase in cultured 3T3-L1 adipocytes in a manner dependent on GPRC6A, our results suggest that the constitutive activation of GPRC6A signaling in adipocytes by GluOC or ornithine plays a key role in adipose lipid handling and the prevention of obesity and related metabolic disorders.


Asunto(s)
Inflamación/genética , Obesidad/genética , Osteocalcina/genética , Receptores Acoplados a Proteínas G/genética , Células 3T3-L1 , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Animales , Prueba de Tolerancia a la Glucosa , Humanos , Inflamación/patología , Insulina/genética , Resistencia a la Insulina/genética , Lipasa/genética , Lipólisis/genética , Ratones , Ratones Noqueados , Obesidad/metabolismo , Obesidad/patología
8.
Eur J Pharmacol ; 895: 173881, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33476655

RESUMEN

OBJECTIVES: Volume-regulated anion channels (VRACs), expressed in various cells, play an important role in cell volume regulation. Despite being physiologically defined almost half a century ago, only the molecular candidates of VRAC, TMEM16A, LRRC8A, and bestrophin-1 (BEST1), are known. Here, we aimed to explore the functional significance of VRAC in, HST-1, an oral squamous cell carcinoma (OSCC) cell line. METHODS: Cell proliferation assays, RT-PCR, Western blot, and flow cytometry were used to estimate changes in gene expression and cell proliferation. Ion channel activity was recorded using the patch-clamp technique. Specific genes were knocked-down by siRNA assays. RESULTS: VRAC, identified as a hypotonicity-induced current, was highly functional and associated with the proliferation of HST-1 cells but not of HaCaT (a normal keratinocyte) cells. The pharmacological profile of VRAC in HST-1 was similar to that reported previously. DCPIB, a specific VRAC inhibitor, completely inhibited VRAC and proliferation of HST-1 cells, eventually leading to apoptosis. VRAC in HST-1 was attenuated by the knockdown of TMEM16A and LRRC8A, while knockdown of BEST1 affected cell proliferation. In situ proximity ligation assay showed that TMEM16A and LRRC8A co-localized under isotonic conditions (300 mOsM) but were separated under hypotonic conditions (250 mOsM) on the plasma membrane. CONCLUSIONS: We have found that VRAC acts to regulate the proliferation of human metastatic OSCC cells and the composition of VRAC may involve in the interactions between TMEM16A and LRRC8A in HST-1 cells.


Asunto(s)
Anoctamina-1/metabolismo , Proliferación Celular , Canales de Cloruro/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Neoplasias de la Lengua/metabolismo , Anoctamina-1/antagonistas & inhibidores , Anoctamina-1/genética , Antineoplásicos/farmacología , Apoptosis , Bestrofinas/genética , Bestrofinas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/genética , Ciclopentanos/farmacología , Regulación Neoplásica de la Expresión Génica , Humanos , Indanos/farmacología , Activación del Canal Iónico , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Unión Proteica , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/secundario , Neoplasias de la Lengua/tratamiento farmacológico , Neoplasias de la Lengua/genética , Neoplasias de la Lengua/patología
9.
Lab Invest ; 101(1): 38-50, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32901097

RESUMEN

Epidermal growth factor receptor (EGFR) is highly expressed in several types of cancer cells including oral squamous cell carcinoma (OSCC). EGF/EGFR signaling is recognized as an important molecular target in cancer therapy. However, cancer cells often become tolerant to EGF/EGFR signaling-targeted therapies. In the tumor microenvironment, the tumor incites inflammation and the inflammation-derived cytokines make a considerable impact on cancer development. In addition, hyperosmolarity is also induced, but the role of osmotic stress in cancer development has not been fully understood. This study demonstrates molecular insights into hyperosmolarity effect on OSCC development and shows that NFAT5 transcription factor plays an important functional role in enhancing the oral cancer cell proliferation by inducing the EGFR translocation from the endoplasmic reticulum to the plasma membrane through increase the expression of DPAGT1, an essential enzyme for catalyzing the first committed step of N-linked protein glycosylation. These results suggest that hyperosmolarity-induced intra-nuclear translocation of NFAT5 essential for DPAGT1 activation and EGFR subcellular translocation responsible for OSCC tumor progression.


Asunto(s)
N-Acetilglucosaminiltransferasas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Neoplasias de la Lengua/metabolismo , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Presión Osmótica , Microambiente Tumoral
10.
Adv Biol Regul ; 78: 100752, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32992234

RESUMEN

Bone provides skeletal support and functions as an endocrine organ by producing osteocalcin, whose uncarboxylated form (GluOC) increases the metabolism of glucose and lipid by activating its putative G protein-coupled receptor (family C group 6 subtype A). Low doses (≤10 ng/ml) of GluOC induce the expression of adiponectin, adipose triglyceride lipase and peroxisome proliferator-activated receptor γ, and promote active phosphorylation of lipolytic enzymes such as perilipin and hormone-sensitive lipase via the cAMP-PKA-Src-Rap1-ERK-CREB signaling axis in 3T3-L1 adipocytes. Administration of high-dose (≥20 ng/ml) GluOC induces programmed necrosis (necroptosis) through a juxtacrine mechanism triggered by the binding of Fas ligand, whose expression is induced by forkhead box O1, to Fas that is expressed in adjacent adipocytes. Furthermore, expression of adiponectin and adipose triglyceride lipase in adipocytes is triggered in the same manner as following low-dose GluOC stimulation; these effects protect mice from diet-induced accumulation of triglycerides in hepatocytes and consequent liver injury through the upregulation of nuclear translocation of nuclear factor-E2-related factor-2, expression of antioxidant enzymes, and inhibition of the c-Jun N-terminal kinase pathway. Evaluation of these molecular mechanisms leads us to consider that GluOC might have potential as a treatment for lipid metabolism disorders. Indeed, there have been many reports demonstrating the negative correlation between serum osteocalcin levels and obesity or non-alcoholic fatty liver disease, a common risk factor for which is dyslipidemia in humans. The present review summarizes the effects of GluOC on lipid metabolism as well as its possible therapeutic application for metabolic diseases including obesity and dyslipidemia.


Asunto(s)
Tejido Adiposo/metabolismo , Metabolismo de los Lípidos/fisiología , Hígado/metabolismo , Osteocalcina/fisiología , Adiponectina/metabolismo , Tejido Adiposo/citología , Animales , Humanos , Ratones , Necroptosis , Osteocalcina/metabolismo , Transducción de Señal
11.
Bone ; 135: 115316, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32169603

RESUMEN

Musculoskeletal diseases and disorders, including osteoporosis and rheumatoid arthritis are diseases that threaten a healthy life expectancy, and in order to extend the healthy life expectancy of elderly people, it is important to prevent bone and joint diseases and disorders. We previously reported that alymphoplasia (aly/aly) mice, which have a loss-of-function mutation in the Nik gene involved in the processing of p100 to p52 in the alternative NF-κB pathway, show mild osteopetrosis with a decrease in the osteoclast number, suggesting that the alternative NF-κB pathway is a potential drug target for ameliorating bone diseases. Recently, the novel NF-κB-inducing kinase (NIK)-specific inhibitor compound 33 (Cpd33) was developed, and we examined its effect on osteoclastic bone resorption in vitro and in vivo. Cpd33 inhibited the receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis accompanied by a decrease in the expression of nfatc1, dc-stamp, and cathepsin K, markers of osteoclast differentiation, without affecting the cell viability, in a dose-dependent manner. Cdp33 specifically suppressed the RANKL-induced processing of p100 to p52 but not the phosphorylation of p65 or the degradation or resynthesis of IκBα in osteoclast precursors. Cpd33 also suppressed the bone-resorbing activity in mature osteoclasts. Furthermore, Cdp33 treatment prevented bone loss by suppressing the osteoclast formation without affecting the osteoblastic bone formation in ovariectomized mice. Taken together, NIK inhibitors may be a new option for patients with a reduced response to conventional pharmacotherapy or who have serious side effects.


Asunto(s)
Enfermedades Óseas Metabólicas , Resorción Ósea , Anciano , Animales , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/prevención & control , Diferenciación Celular , Humanos , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Osteoclastos/metabolismo , Proteínas Serina-Treonina Quinasas , Ligando RANK/metabolismo , Quinasa de Factor Nuclear kappa B
12.
J Endocrinol ; 244(2): 285-296, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31693486

RESUMEN

Osteocalcin is a bone-derived hormone that in its uncarboxylated form (GluOC) plays an important role in glucose and energy metabolism by stimulating insulin secretion and pancreatic ß-cell proliferation through its putative receptor GPRC6A. We previously showed that the effect of GluOC on insulin secretion is mediated predominantly by glucagon-like peptide-1 (GLP-1) released from intestinal endocrine cells in response to GluOC stimulation. Moreover, oral administration of GluOC was found to reduce the fasting blood glucose level, to improve glucose tolerance, and to increase the fasting serum insulin concentration and ß-cell area in the pancreas in wild-type mice. We have now examined the effects of oral GluOC administration for at least 4 weeks in GLP-1 receptor-knockout mice. Such administration of GluOC in the mutant mice triggered glucose intolerance, enhanced gluconeogenesis and promoted both lipid accumulation in the liver as well as adipocyte hypertrophy and inflammation in adipose tissue. Furthermore, inactivation of GLP-1 receptor signaling in association with GluOC administration induced activation of the transcription factor FoxO1 and expression of its transcriptional coactivator PGC1α in the liver, likely accounting for the observed upregulation of gluconeogenic gene expression. Our results thus indicate that the beneficial metabolic effects of GluOC are dependent on GLP-1 receptor signaling.


Asunto(s)
Péptido 1 Similar al Glucagón/metabolismo , Intolerancia a la Glucosa/metabolismo , Osteocalcina/metabolismo , Animales , Glucemia/metabolismo , Femenino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Péptido 1 Similar al Glucagón/genética , Intolerancia a la Glucosa/genética , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Receptores de Glucagón/genética , Receptores de Glucagón/metabolismo
13.
Neurochem Int ; 131: 104563, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31589911

RESUMEN

Peripheral lipopolysaccharide (LPS) injection induces systemic inflammation through the activation of the inhibitor of nuclear factor kappa B (NF-κB) kinase (IKK)/NF-κB signaling pathway, which promotes brain dysfunction resulting in conditions including anorexia. LPS-mediated reduction of food intake is associated with activation of NF-κB signaling and phosphorylation of the transcription factor signal transducer and activator of transcription 3 (STAT3) in the hypothalamus. We recently reported phospholipase C-related catalytically inactive protein (PRIP) as a new negative regulator of phosphatidylinositol 3-kinase/AKT signaling. AKT regulates the IKK/NF-κB signaling pathway; therefore, this study aimed to investigate the role of PRIP/AKT signaling in LPS-mediated neuroinflammation-induced anorexia. PRIP gene (Prip1 and Prip2) knockout (Prip-KO) mice intraperitoneally (ip) administered with LPS exhibited increased anorexia responses compared with wild-type (WT) controls. Although few differences were observed between WT and Prip-KO mice in LPS-elicited plasma pro-inflammatory cytokine elevation, hypothalamic pro-inflammatory cytokines were significantly upregulated in Prip-KO rather than WT mice. Hypothalamic AKT and IKK phosphorylation and IκB degradation were significantly increased in Prip-KO rather than WT mice, indicating further promotion of AKT-mediated NF-κB signaling. Consistently, hypothalamic STAT3 was further phosphorylated in Prip-KO rather than WT mice. Furthermore, suppressor of cytokine signaling 3 (Socs3), a negative feedback regulator for STAT3 signaling, and cyclooxogenase-2 (Cox2), a candidate molecule in LPS-induced anorexigenic responses, were upregulated in the hypothalamus in Prip-KO rather than WT mice. Pro-inflammatory cytokines were upregulated in hypothalamic microglia isolated from Prip-KO rather than WT mice. Together, these findings indicate that PRIP negatively regulates LPS-induced anorexia caused by pro-inflammatory cytokine expression in the hypothalamus, which is mediated by AKT-activated NF-κB signaling. Importantly, hypothalamic microglia participate in this PRIP-mediated process. Elucidation of PRIP-mediated neuroinflammatory responses may provide novel insights into the pathophysiology of many brain dysfunctions.


Asunto(s)
Anorexia/enzimología , Encefalitis/enzimología , Hipotálamo/enzimología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Animales , Anorexia/inducido químicamente , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Ingestión de Alimentos , Encefalitis/inducido químicamente , Péptidos y Proteínas de Señalización Intracelular/genética , Lipopolisacáridos , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , FN-kappa B/metabolismo , Proteína Oncogénica v-akt/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/genética
14.
Sci Rep ; 9(1): 12729, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31484968

RESUMEN

Cytokinesis is initiated by the formation and ingression of the cleavage furrow. Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] accumulation followed by RhoA translocation to the cleavage furrow are prerequisites for cytokinesis progression. Here, we investigated whether phospholipase C (PLC)-related catalytically inactive protein (PRIP), a metabolic modulator of PI(4,5)P2, regulates PI(4,5)P2-mediated cytokinesis. We found that PRIP localised to the cleavage furrow during cytokinesis. Moreover, HeLa cells with silenced PRIP displayed abnormal cytokinesis. Importantly, PI(4,5)P2 accumulation at the cleavage furrow, as well as the localisation of RhoA and phospho-myosin II regulatory light chain to the cleavage furrow, were reduced in PRIP-silenced cells. The overexpression of oculocerebrorenal syndrome of Lowe-1 (OCRL1), a phosphatidylinositol-5-phosphatase, in cells decreased PI(4,5)P2 levels during early cytokinesis and resulted in cytokinesis abnormalities. However, these abnormal cytokinesis phenotypes were ameliorated by the co-expression of PRIP but not by co-expression of a PI(4,5)P2-unbound PRIP mutant. Collectively, our results indicate that PRIP is a component at the cleavage furrow that maintains PI(4,5)P2 metabolism and regulates RhoA-dependent progression of cytokinesis. Thus, we propose that PRIP regulates phosphoinositide metabolism correctively and mediates normal cytokinesis progression.


Asunto(s)
Membrana Celular/metabolismo , Citocinesis , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfoinositido Fosfolipasa C/metabolismo , Membrana Celular/genética , Células HeLa , Humanos , Fosfoinositido Fosfolipasa C/genética , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo
15.
J Anesth ; 33(4): 531-542, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31332527

RESUMEN

PURPOSE: The general anesthetics propofol and etomidate mainly exert their anesthetic actions via GABA A receptor (GABAA-R). The GABAA-R activity is influenced by phospholipase C-related inactive protein type-1 (PRIP-1), which is related to trafficking and subcellular localization of GABAA-R. PRIP-1 deficiency attenuates the behavioral reactions to propofol but not etomidate. However, the effect of these anesthetics and of PRIP-1 deficiency on brain activity of CNS are still unclear. In this study, we examined the effects of propofol and etomidate on the electroencephalogram (EEG). METHODS: The cortical EEG activity was recorded in wild-type (WT) and PRIP-1 knockout (PRIP-1 KO) mice. All recorded EEG data were offline analyzed, and the power spectral density and 95% spectral edge frequency of EEG signals were compared between genotypes before and after injections of anesthetics. RESULTS: PRIP-1 deficiency induced increases in EEG absolute powers, but did not markedly change the relative spectral powers during waking and sleep states in the absence of anesthesia. Propofol administration induced increases in low-frequency relative EEG activity and decreases in SEF95 values in WT but not in PRIP-1 KO mice. Following etomidate injection, low-frequency EEG power was increased in both genotype groups. At high frequency, the relative power in PRIP-1 KO mice was smaller than that in WT mice. CONCLUSIONS: The lack of PRIP-1 disrupted the EEG power distribution, but did not affect the depth of anesthesia after etomidate administration. Our analyses suggest that PRIP-1 is differentially involved in anesthetic EEG activity with the regulation of GABAA-R activity.


Asunto(s)
Etomidato/administración & dosificación , Péptidos y Proteínas de Señalización Intracelular/genética , Propofol/administración & dosificación , Proteínas Adaptadoras Transductoras de Señales , Anestésicos Generales/administración & dosificación , Anestésicos Intravenosos/administración & dosificación , Animales , Electroencefalografía , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de GABA-A/efectos de los fármacos
16.
J Oral Biosci ; 61(2): 65-72, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31109860

RESUMEN

BACKGROUND: Overweight and obesity are defined as excessive or abnormal fat accumulation in adipose tissues, and increase the risk of morbidity in many diseases, including hypertension, dyslipidemia, type 2 diabetes, coronary heart disease, and stroke, through pathophysiological mechanisms. There is strong evidence that weight loss reduces the risk of metabolic syndrome by limiting blood pressure and improving the levels of serum triglycerides, total cholesterol, low-density lipoprotein-cholesterol, and high-density lipoprotein-cholesterol. To date, several attempts have been made to develop effective anti-obesity medication or weight-loss drugs; however, satisfactory drugs for clinical use have not yet been developed. Therefore, elucidation of the molecular mechanisms driving fat metabolism (adipogenesis and lipolysis) represents the first step in developing clinically useful drugs and/or therapeutic treatments to control obesity. HIGHLIGHT: In our previous study on intracellular signaling of phospholipase C-related catalytically inactive protein (PRIP), we generated and analyzed Prip-double knockout (Prip-DKO) mice. Prip-DKO mice showed tolerance against insulin resistance and a lean phenotype with low fat mass. Here, we therefore reviewed the involvement of PRIP in fat metabolism and energy expenditure. We conclude that PRIP, a protein phosphatase-binding protein, can modulate fat metabolism via phosphoregulation of adipose lipolysis-related molecules, and regulates non-shivering heat generation in brown adipocytes. CONCLUSION: We propose PRIP as a new therapeutic target for controlling obesity or developing novel anti-obesity drugs.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metabolismo de los Lípidos , Coactivadores de Receptor Nuclear , Fosfolipasas de Tipo C , Animales , Metabolismo Energético , Lipólisis , Ratones , Coactivadores de Receptor Nuclear/fisiología
17.
Cell Death Dis ; 9(12): 1194, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30546087

RESUMEN

The uncarboxylated form of osteocalcin (GluOC) regulates glucose and lipid metabolism in mice. We previously showed that low-dose (≤10 ng/ml) GluOC induces the expression of adiponectin and peroxisome proliferator-activated receptor γ (PPARγ) via a cAMP-PKA-ERK-CREB signaling pathway in 3T3-L1 adipocytes. We also noticed that high-dose (≥20 ng/ml) GluOC inhibits the expression of adiponectin and PPARγ in these cells. We have here explored the mechanism underlying these effects of high-dose GluOC. High-dose GluOC triggered morphological changes in 3T3-L1 adipocytes suggestive of the induction of cell death. It activated the putative GluOC receptor GPRC6A and thereby induced the production of cAMP and activation of protein kinase A (PKA), similar to signaling by low-dose GluOC with the exception that the catalytic subunit of PKA also entered the nucleus. Cytosolic PKA induced phosphorylation of cAMP response element-binding protein (CREB) at serine-133 via extracellular signal-regulated kinase (ERK). Nuclear PKA appeared to mediate the inhibitory phosphorylation of salt-inducible kinase 2 (SIK2) at serine-358 and thereby to alleviate the inhibitory phosphorylation of the CREB co-activator p300 at serine-89. The activation of CREB and p300 resulted in increased expression of the transcription factor FoxO1 and consequent upregulation of Fas ligand (FasL) at the plasma membrane. The interaction of FasL with Fas on neighboring adipocytes triggered the phosphorylation at threonine-357/serine-358 and homotrimerization of mixed-lineage kinase domain-like protein (MLKL), a key regulator of necroptosis, as well as Ca2+ influx via transient receptor potential melastatin 7 (TRPM7), the generation of reactive oxygen species and lipid peroxides, and dephosphorylation of dynamin-related protein 1 (DRP1) at serine-637, resulting in mitochondrial fragmentation. Together, our results indicate that high-dose GluOC triggers necroptosis through upregulation of FasL at the plasma membrane in a manner dependent of activation of CREB-p300, followed by the activation of Fas signaling in neighboring adipocytes.


Asunto(s)
Muerte Celular/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína Ligando Fas/genética , Receptor fas/genética , Factores de Transcripción p300-CBP/genética , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adiponectina/genética , Animales , Muerte Celular/efectos de los fármacos , Membrana Celular/genética , AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Dinaminas/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Osteocalcina/farmacología , Fosforilación/efectos de los fármacos , Canales Catiónicos TRPM/genética
18.
J Neurotrauma ; 35(12): 1379-1386, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29336201

RESUMEN

Mice with a knockout of phospholipase C (PLC)-related inactive protein type 1 (PRIP1-/- mice) display anxiety-like behavior and altered γ-aminobutyric acid (GABA)A-receptor pharmacology. Here, we examined associations between anxiety and motor-function recovery in PRIP1-/- mice after a spinal cord injury (SCI) induced by a moderate contusion injury at the 10th thoracic level. Uninjured PRIP1-/- mice showed less distance than wild-type (WT) mice in the center 25% in an open field test (OFT), indicating anxiety-like behavior. Anxiety behavior increased in both WT and PRIP1-/- mice after SCI. WT and PRIP1-/- mice were completely paralyzed on day 1 after SCI, but gradually recovered until reaching a plateau at ∼4 weeks. After SCI, the PRIP1-/- mice had significantly greater motor dysfunction than the WT mice. In WT mice after SCI, the percentage of distance spent in the center 25% of the OFT was correlated with the OFT distance traveled and velocity, and with the reaction time in a plantar pressure-sensitivity mechanical test. In PRIP1-/- mice after SCI, the percentage of distance spent in the center 25% of the OFT was correlated with the OFT distance traveled and with the latency to fall in the rotarod test. Six weeks after SCI, ionized calcium binding adaptor molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP) expressions were elevated at the lesion epicenter in PRIP1-/- mice, and spinal cord atrophy and demyelination were more severe than in WT mice. The axonal fiber development was also decreased in PRIP1-/- mice, consistent with the poor motor-function recovery after SCI in these mice.


Asunto(s)
Ansiedad/complicaciones , Recuperación de la Función , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/psicología , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Coactivadores de Receptor Nuclear/deficiencia
19.
J Cancer ; 8(13): 2478-2486, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28900485

RESUMEN

Because of the poor response to chemotherapy and radiation therapy, new treatment approaches by immune-based therapy involving activated T cells are required for melanoma. We previously reported that the uncarboxylated form of osteocalcin (GluOC), derived from osteoblasts, potentially suppresses human prostate cancer cell proliferation by direct suppression of cell growth. However, the mechanisms in vivo have not been elucidated. In this study, we found that GluOC suppressed tumor growth of B16 mouse melanoma transplants in C57Bl/6N wild-type mice. Our data demonstrated that GluOC suppressed cell growth by downregulating phosphorylation levels of receptor tyrosine kinases and inducing apoptosis in vitro. Additionally, stimulation of primary mouse splenocytes with concanavalin A, a polyclonal T-cell mitogen, in the presence of GluOC increased T cell proliferation and their interferon-γ production. Taken together, we demonstrate that GluOC exerts multiple antitumor effects not only in vitro, but also in vivo through cellular immunostimulatory effects against B16 mouse melanoma cells.

20.
Sci Rep ; 7(1): 5408, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28710365

RESUMEN

The metabolic processes of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] into PI(3,4,5)P3 and the subsequent PI(3,4,5)P3 signalling are involved in cell migration. Dysfunctions in the control of this pathway can cause human cancer cell migration and metastatic growth. Here we investigated whether phospholipase C-related catalytically inactive protein (PRIP), a PI(4,5)P2-binding protein, regulates cancer cell migration. PRIP overexpression in MCF-7 and BT-549 human breast cancer cells inhibited cell migration in vitro and metastasis development in vivo. Overexpression of the PRIP pleckstrin homology domain, a PI(4,5)P2 binding motif, in MCF-7 cells caused significant suppression of cell migration. Consistent with these results, in comparison with wild-type cells, Prip-deficient mouse embryonic fibroblasts exhibited increased cell migration, and this was significantly attenuated upon transfection with a siRNA targeting p110α, a catalytic subunit of class I phosphoinositide 3-kinases (PI3Ks). PI(3,4,5)P3 production was decreased in Prip-overexpressing MCF-7 and BT-549 cells. PI3K binding to PI(4,5)P2 was significantly inhibited by recombinant PRIP in vitro, and thus the activity of PI3K was downregulated. Collectively, PRIP regulates the production of PI(3,4,5)P3 from PI(4,5)P2 by PI3K, and the suppressor activity of PRIP in PI(4,5)P2 metabolism regulates the tumour migration, suggesting PRIP as a promising target for protection against metastatic progression.


Asunto(s)
Movimiento Celular/genética , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Fosfoinositido Fosfolipasa C/genética , Transducción de Señal/genética , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Células Cultivadas , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Embrión de Mamíferos/citología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Desnudos , Metástasis de la Neoplasia , Fosfoinositido Fosfolipasa C/metabolismo , Interferencia de ARN , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...